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E F F E C T  OF F L O W  N O N P A R A L L E L I S M  O N  I N S T A B I L I T Y  

OF T H E  T A Y L O R - G O R T L E R  W A V E S  IN S U P E R S O N I C  A X I S Y M M E T R I C  JETS 

N . M .  Terekhova UDC 532.526 

Within the framework of the linear theor!! of hydrodynamic stability, the characteristics of the 
Taylor-GSrtler waves are numev~cally simulated at the initial section of a supersonic axisym- 
metric jet taking into account the effects of flow nonparulleli, sm and expansion. The special 
features of the streamwise dynamics of the growth rates of various wave components for" turbu- 
lent. weakly nonisoba~'ic, and laminar jets are studied. It is shown that the growth rates depend 
stTvngly on the quantity on wh, ieh their dete~Tnination is based, the position of the point where 
it is 'measured. and the flow regime. Some experimental results are discussed, and a method 
for dete~uining the gTvwth 7rites is p~vposed. 

I n t r o d u c t i o n .  Tile objective of the present work is to study the effect of nonparallelism of the 
mean flow fields, which is related to expansion of a supersonic axisymmetric .jet, on tile characteristics of 
disturbances of rotational or centrifltgal instability - -  Taylor-GSrt ler  waves. In nonisobaric jets, these waves 
have tim form of a system o[ streamwise quasi-statiomtry vortices enclosed in the mixiug layer of the initial 
section. This type of instability in je ts  is of great interest,  which is evidenced by the large mmlber of 
experimental  works [1 6]. Most works note the existence of transverse-azinmthal overflow of the gas mass, 
which leads to significant deviations of the parameters from tlmir mean vahms. Variations of the excess total 
pressure in streamwise sections, which allow one to obtain data  on the streamwise dynamics of" waves, wexe 

measure(l only in [4-6]. 
Results of systematic numerical and theoretical studies of the characteristics and structure of such 

(listurbanees are described in [5, 7-10]. It is shown in [7] tha t  quasi-stationary waves may occur in nonisobaric 
jets if we take into account centrifilgal forces arising in the motion along curved trajectories of the initial 
section. It  was found in [5, 8] tha t  bo th  the wave growth rates and the transverse-azimuthal developments of 
the wave fields can be described in the plane-i)andlel approximation with ignored viscosity. The structures 
of streamwise vortices are studied in detail  in [9], and their  basic dependences on some governing parameters 

are established. 
Studying tile problem with consideration of viscosity [10] allowed one to determine the ranges of 

existence of an unstable process and the critical Reynolds numbers of tim loss of stability and to propose 
some criterial estinmtes. It is also shown that .  at low Reynolds mmfi)ers, the wave spe(~trum consists of only 
one prevailing, maximally unstable mode. An increase in tim Reynohls numl)er leads to the exI)ansion of" the 
spectral  composition and, hence, to the coml)lication of the structure of wave fields and wave configurations. 

Some aspects remain uHstudied, and without examining ttmm. the analysis cannot be ('onsidered to 
be complete, since some properties o[ the disturl)ances observed are not described by the theory. Ral)i(1 
destruction o[" high-mode components  is ol)served in the experiment upon jet  sprea(ling, whereas the invis('id 
calculations show that tim growth rates of small-scale components  gradually increase with increasiug mo(le 
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number, and, according to the theory,  these components  should increase more rapidly. At the same time, 
the growth rates of the waves of small  azimuthal modes registered in experiments as the dominating ones are 
lower than their theoretical wflues. I t  was also noted [4, 5] that there are large-scale disturbances (with small 
azimuthal wavenumbers) in the near- root  regions, which decay downstream. 

The difference between the experimental and theoretical da ta  may be caused both by experimental  
errors (the accuracy is not very high) and by the fact t ha t  the theory does not take into account a number of 
factors (for example, the mean-xfelocity nonparallelism at  the initial section and the dependence of the mean 
and wave characteristics on the streamwise coordinate).  

The ol)jective of the present work is to study the  effect of nonparallelism and dowik~tream expansion 
of the jet on wave stability. Viscosity was ignored in these studies, since the e• were conducted for 
Reynolds mmfl)ers Be ~ 107 for which viscosity exerts a minor effect. 

G o v e r n i n g  E q u a t i o n s  a n d  M e t h o d s  o f  S o l u t i o n .  The flow scheme at the initial section of an 
underexpanded jet  is shown in Fi~. 1. We consider a compressed layer of the first barrel of an ~Lxisymmetric 
ambient nonisobaric jet whose transw~.rse length is from the external boundary of the barrel shock (BS) to 
the mixing-h\'qer boundary and whose streamwise length is from the nearest boundary of the nozzle exit to 
the Math disk. The  shocks and changes in the mean parameters  in these shocks are not considered, but  it is 
assumed that the BS positiofi determines  the values of the curvature radii R0 and. hence, the centrifugal force 
proportional to U 2 / R o .  In the streamwise direction, the  length of the computational domain is expressed 
through the mixing-layer thickness 3. The  range under consideration 0.1 < 6 < 0.65 corresponds to the actual 
dimensionless thickness of the mixing layer. 

We used the cnrvilinear orthogonal coordinates/~ --/-{0 + ", where r is the radial w~riable and R0 is the 
curvature radius (R~ >> ,'), and the angular ~ariables ~ and "y, which are the azimuthal and longitudinal angles, 
respectively (Fig. i). They correspond to the radial, azimuthal, and longitudinal components of velocity 'u, iv, 
and u. If R~ = const, the streamwise coordinate x may be introduced by the relation dx = R0d7. Zheltukhin 
and Terekhowt [7] derived the complete invisckl system of equations in these coordinates: 

vt + 'v'tl,. + '~vv ~/r + "tvt~x -- vJ2 / r  - t[2 /-R ---- - -p , . /p ,  

"tvt + v'u,,. + u,'w,~/'r + tt'~l,x + 't ' tv/r = - p ~ / p r ,  'u,t + 'V'Ur + 'u,tt~/r + 'tt'ttz: = - p c ~ p ,  (1) 

p, + , p ,  + + , px + + + + = o. 

St  -t- "uS,. + "u,S~:/," + "~tS.~ = O, S = In (p/pk)C~ . 

Here p is the pressure, p is the density, and S is the entropy. System (1) is written for dimensional quantities, 
and the method of normalization is described below. In (1), only the main centrifilgal term in the equation 
for 'v is taken into account. As is shown in [7], the effect of tim Coriolis force " w / R  in the equation for t, 
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and the geometric effect p v / R  in the  continuity equat ion is negligibly small. An ambient cold air .jet with 

k = c p / c v  = 1.4 is considered. 
In our analysis with nonparal le l ism effects taken into account, we used the results of [11, 12]. ~Ve 

assume that  tile mean flow weakly depends  on the coordinate  in tile s treamwise direction. We introduce a 

slow w~riable s = k:r, where the small  pa rame te r  X characterizes the degree of jet expansion. The velocity 

field, density, and pressure are represented  in the form '5 = IeV(r, s) + e, / ,  ew'.  U (r, .s) + eu'l, ~0", s) + ep', 
and P ( r )  + fp' .  The dependence of the  mixing-layer thickness 5 on tile ( 'oordinate x determines the so-called 

streamwise bindings 5(a:)  or v = da/dx related to the flow character or regime. 

For .jets with moderate  pressure  ratios,  the realistic range of dinmnsionless curvature radii seems to be 

5 < R0 < 25, which was studied in the  present  paper.  
It  is ~ssumed that  the compressed  layer consists of two subregkms. In the first, "inviscid" one [13], 

which extends from the external b o u n d a r y  of tile BS to the line of the m a x i n m m  excess total  pressure (the 

dashed curve in Fig. 1), tile total  pressure  is recovered, tile mean velocity increases (to a max imum vahm), 

and the flow I)arameters are de te rmined  front the perfect-gas equations. In the second subregion (mixing 

layer), there is a smooth transit ion f rom the parameters  at  the internal boundary  of the compressed layer to 

the parameters  of the amt)ient space.  
The streamwise velocity and  densi ty  in the first subregion are assumed to be constant and equal to 

their  maxinmm wflues. In averaging Eqs. (1), the values of  the mean velocity 0 and nman density O in this 

analog of the l)otential t.ore are a s sumed  to have characterist ic values. 

The dinmnsionless profiles of  the  mean  velocity in mixing layers are defined by the following expression: 

U(r)  = exp( -0 .693 ,1") ,  q = 2 ( r -  r , ) /&  ,', = 1 - 5/2. (2) 

This  approximatiou formula sat isfactori ly describes the actual  distributions [11, 14]. 
The characteristic dimensional l inear scale is chosen as '? for which the dimensional velocity is half of 

the characteristic wdue: therefore, we have U = 0.5 for r = 1 in the dimensionless form. The wfiue r" = 1 

coincides with half of the thickness of  the  mixing layer whose length is I'l < r < 1 + 6/2. 
The nman density t~ is re lated to  U as fl = [1 + (k - 1)M~)(1 - U2)/2] - l ,  and the velocity of sound 

is determine(1 from the equation a 2 = [QMs] . The  vahm of the Mach number  M0 entering into the main 

equations is also determined from the line of the maximunl  velocity. Using isentrot)ic relations, it can be 

related to the Mach number at  the  nozzle exit M,.  
We seek wave solutions slowly changing along the s t reamwise coordinate (only the pressure component  

is wri t ten here) in the form 

p'(, ' , oZ. x, t) ---- p(,', s) exp ('iv + in c;), r = ~')(x) - oat. (3) 

where d(-)/d:r = a(s)  (r = a"  + ia~). Here a ~ and n are the streamwise and azimuthal wavenum- 

hers, r is the amplification fac tor  in the streamwise direction, aml the  angulm" frequency oa is real. 

For the Taylor GSr t le r  waves, we have (p', v'. u'. p') = (p(r, s), ,,(r. s), u(r,  s), p(,'..~)) exp (Jr) cos( , , ; )  and 
w' = iw(r. s )exp  ('iv)sin (m2). T h e  value of 'n determines the number of vortices or vortex pairs on the 

jet  circumDrence. Small and large wdues of n corresI)ond to large-scale and small-scale vortices, respectively. 
For the T~wlor-GSrtler vortices,  ct r and o., are equal to zero. To avoid singularities during integration of 

(1) for U ~ 0, the calculations were l)erformed for small fre(luencies other than  zero defined by the acoustic 
Strouhal  numl)er Sh = 2rr&/:/5, where  ii is the velocity of sound outside the mixing layer. It  was generally 

ac('el)ted that  Sh = 0.005, and small  values of ~1" other than  zero were obtained.  
Tim COml)lex amplitu(le funct ions of disturbances can be expanded into the asyml)totic series 

p("', S) = Z s S). (4) 
J 

We confiue ourselves to two terms of expansion.  Linearizing ( i)  in terms of c for waves (3) and (4), we obtain 

the sys tem 

iFv j  + p}/Q - 2 U u j / R  = - e J B I ,  i F w j  + inpj/(Qr) = -~JB2,  
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iFu j  + U'vj + ic~pj/Q = -aJB3, (5) 

iFM~pj + v'j + vj/,. + i n~ ,# , "  + i~,~,,j = - e J B 4 ,  F = ~ U  - ~ ,  j = 0, 1, 

with the boundary conditions pj --~ 0 for r ---, 0 and r --* c~. Hereinafter,  the pr ime denotes tile derivative 
with respect  to r. The ampli tude fimetions of the wave conlponents and the boundary  conditions on them 

can be expressed through the anlplitude fimetion of the pressure p. 

I t  is nlore convenient to solve system (5) for the flmction p. The  reduced equation for j = 0 corre- 

sponding to the plane-parallel approximat ion has the form 

L(po) =- p~ + Glt/o + C2po = 0, (6) 

where GI  = a ? + a f ,  G2 = G o + G f ,  V ~ = l / r - t ) ' / ~ ) - 2 F ' / F ,  and a ~ = F2/a  2 - n 2 / ,  . 2 -  a2; the additional 

terms G~  = 2(tU/(FR) - 2 F ' B / ( F E )  + B ' / E  and G~ = B(n2/( , 'F)  2 - 1/a 2) + 2(F '  - a U ( d / O  + 2F'(1 + 
B / E ) / F  - B ' / E -  1 / r ) ) / (FR)  (13 = 2UU' /R,  E = F 2 - B) are determined by the presence of the  centrifugal 

force. 
The  boundary conditions in regions of constant mean parameters  are expressed through the modified 

Bessel functions 
I 

Po = CtI, ,(Alr),  t); = Cl/ , , (Alr) .  r - -*  0, (7) 

po = C.,K,~(,x2,'). p ;  = c._,IC(a._,,-), ,,._~ ~ .  a2 = f 2 / a  ~ _ (~2. 

The formulated bomldary-vahm problem for eigenwdues allows us to de te rmine  the eigenvalue of c~ in the 

phme-paral lel  al)proximation. 
The  correslmnding eigenfunction P0 ll~s an arbi t rary  aml)litude A(s):  P0 = A(.s)Po('r, s). For Po, the 

same equat ion ~k~ for P0 is valM [Eq. (6) with boundary conditions (7)]. and the wave solution Of zero or(ter 

is written in the fi)rm 

p(,.. ~, z ,  t) = A(.~)P0(,'..~) exp ( i~ )cos  ( , ~ )  + o ( ~ ) .  (s) 

For tile first-or(h,r aI)proximation in terms of z (j = 1), systenl (5) yieMs a sys tem of inhomogeneous equations 
whose right sides contain the functions of zero order, their derivatives with respect to r and x, the mean 

transverse velocity V de.terlnined from the continuity equation, and the mean-veloci ty  gradients: 

Bl = V%o + Vv~o + Uvo~, B.~ Vu,o/r . , = + 1/w o + Uwox, 

B:~ = U.~:uo + Vtt~j + Uuoz + Pox~e, B~ = (V' + V/r+ Ux)po + Vpro/a 2 + Upo.~./a 2 + Ottoz. 

Here po = APo, Po~ = APo~ + PoA~, vo = Al/i), vo:~ = AVox + VoA~, wo = AWo, "wo~ = AWox + WoAd, 
uo = AUo, Uox = AUOx + UoAx, Po is the solution of (6), and go, l tb ,  and Uo are expressed in terms of Po 

fronl (5). 

Reducing tile inhomogeneous sys tem to one equation for Pt 

dA 
L(p , )  = N t A  + iV.,, -~x' 

where N -- N1 +N,2 = i(D~ + inD,2/r + io:D3+ D t / r  + B l / o ) o E / F ,  DI = (iFBL + 2 U B 3 / R ) / E ,  D,2 = iB,2/F, 
and Da = (iFB:~ - U'BI ) /E ,  we can easily see that  the operator L(pl) is equivalent to opera to r  (6). The 

operator  L(pl) is degenerate: therefore, a solution tbr pt exists under the condition of or thogonali ty of the 

right side of tile equation to the solution of the H problem conjugate to (6) and (7): 

f ( N t A  + 2~ dA~I Id , '=  0. (9) 
. dx ] 

The equat ion for II is e~k~ily obtained from (6): 

I I"  - (G1H)' + G2H = 0. 

The boundary  conditions are found from the bilinear form ~[p0II] = poH/r + fo H -p0H'  and conditions (7). 
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The coefficient of streamwise amplification of zero-order disturbances/3 for a weakly nonparallel flow 
is determined from (8): 

/3 _-- Real d In p ( el In A d In P0 
d:--7- = Real i~ + ~ + --E;--:r J" (10) 

Using the condition of solubility" of Eq. (9), we can express tile logarithmic derivative A(x): 

dlnA (~,~" / N[ ii d r / ~  j.v2n (ll.o 
l" r 

The gradients in Eel. (10) depend on the value of ,(, which can vary in a wide range depending on 
the flow regime and jet'pressure ratio. It is much greater for a turbulent jet t han  tbr a laminar one because 
of enhanced nfixing, and it is greater for an undcrexpanded jet with high pressure ratios than for a weakly 
uonisobaric jet. 

In free jet flows (in contrast to the near-wall boundary layers), the distr ibution of the mean velocities 
in mixing layers is indepen(lent of the flow regime, and relation (2) is valid for the laminar, transitional, and 
turbuletlt jets. This was shown theoretically for planar jets [15] and noted many  times in experiments with 
axisymmetric jets (see [14]). Hence, the transverse gradients of" the mean and wavy components are identical. 
The change in the thickness of free boundary layers is determined by the s ta te  of the flow and exhaustion 
regime; hence, the derivatives with respect to the streamwise coordinate may vary within wide limits. 

In this paper, we consider three regimes of air jet exhaustion for M0 = 1.5: 
(1) turbulent jet with a large pressure ratio (kt = 0.2281 [16]); 
(2) turbulent, weakly underexpanded .jet (k2 = 0.157 [6]); 
(3) lanfinar isobaric .jet (,\3 = 0.08732 [11]). 
In this case, we have 5 =- ,Ix § ~0, where ~0 is the initial thickness of the mixing layer for x = 0. The 

latter regime allows us to evahmte the influence of the exhaustion regime on X- The  flow parameters of the 
third regime are close to the flow parameters with weak nonisobaricity. 

The values of ~C in each regime (lifter by several times, The degxee of  expansion depends on the 
composition of the jet and the meditun whereto the exhaustion is performed. 

R e s u l t s  a n d  Discuss ion.  The experiments [17] show that the growth rates in a sul)sonic boundary 
layer depend on the quantity fi'om which they are (leternfined and on the transverse coordinate in which this 
quantity is measured. This is confirmed by numerical and theoretical studies in a supersonic boundary  layer 
[12]. To establish these del)endences in the jet, the streamwise dynamics of several parameters was studied: 
the pressure perturl)ations determined by Eq. (6), density perturbations, and tota l  pressure perturbations 
(or variations) [4-6]. 
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Variations of the total pressure 5p are constructed using the known gas-dynamic relation from which, 
with accuracy to  quadratic terms, we obtain the expression dp = p / P  + kM2((1 - k)p / (kP)  + 2u/U)/(2  + 
( k -  1)M2), where M is tile local Mach number [7-9]. 

It follows from tile results p lot ted ill Fig. 2 that  the position of the measured quantity along the trans- 
verse coordinate  significantly affects tile growth rate. For exhaustion regime 2, Fig. 2 shows the calculation 
results for the mode  n = 16 for R0 = 20 and the mixing-layer thickness 5 = 0.15, 0.30, and 0.45 (curves 1-3). 
The solid curves show the distributions of the at)solute vahm of the logarithmic derivative Id In (Sp)/dx I. It is 
seen that  this quantity,  which enters Eq. (10). ('hanges significantly in the mixing layer. Hence. the coefficient 
;J also depends strongly on r (dashed curves in Fig. 2). The straight lines show tile wflues of --ct i for the 

plane-parallel  ai)proxinmtion. 
For modera t e  vahles of tile thickness (for example. 5 = 0.15), there exists even a range of negative values 

of/~, where the disturbances are decaying. The presence of these "tongues" is related to the reconstruction 
of wave configurations [9], where a vortex existing at a small thickness 5 is displaced from the mixing layer 
1)y a counter ro ta t ing  vortex~ For large ($, there are no negative x~lues of/3, but  the strong dependence on 
the transverse w~riable is retained. H(mce, in measuring the growth rates, one has to (leterinine exactly 
the location of the measured quantities. We consider this problenl in more detail. The wflues of bt were 
calculated for three exhaustion regimes from different quantities (Fig. 3): front the amplitude function of 
pressure in its maximum (6) (curve 1), from the amplitude fimction of density in its maxinmm (curve 2), 
from variation of the total pressure 5p in its maximum (curve 3), from dp at the line of the halved aw~raged 
total pressure (curve 4), and from 5p at the line of tile halved mean velocity U = 0.5 (curve 5). Curves 1-3 
are of purely theoretical  interest, since ttle experiments register a rather complicated nmltimode spectrmn of 
disturbances [4, 5, 8], and it is difficult to determine the coordinates of the first three quantities in experiment. 
The last two quanti t ies can serve as bindings in measurements, and the coordinate of tile latter can be easily 
deternfined since it coincides with the ha l f  width of the mixing layer. 

The  dashed curves in Fig. 3 show the growth rates _~ti in the plane-parallel  al)proxinmtion. The 
maxinnun difference be, twcen tile curves for - o  i and/3 (solid curves) is observed for small 5 (in the near-root 
region). Wi th  increasing 5, these curw,s come closer. It is also seen that tile growth rates of disturbances 
in regime 1 are significantly lower for a turbulent jet  than for a laminar one (regime 3), whi('h is related to 

enhanced mixing. 
It  w~vs found that  the increnmnts significantly depend on the quantities from which they are deternfined. 

Generally, tile values of ,J are lower than the corresponding values of -e l  i. This is ill qualitative agreement 
with tile exper iments  of [5, 8]. This  regularity is invalid for curve 4. It h&s a strong longitudinal gradient: 
therefore, large errors are possible in determining/;~. For small 5, disturbances in turbulent regimes may be 
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decaying (/3 < 0), whereas the ttmoretical values of - a  i are always positive. 
Similar features are typical of je ts  with a significant curvature of the boundaries (small /70). With 

increasing centrifugal forces, the growth rates of disturbances increase significantly; the flow expansion in 
the near-root regions leads to a decrease in 3 as compared to the plane-parallel approximation but does not 
involve the decay of w~wes with small azimuthal numbers. 

Since the problem is multiparametric,  it is difficult to find a suitable form for representation of the 
res'. We chose regime 2 (k'-') for 6p (curve 5 in Fig. 3). These dependences of the growth rates fl(d) for a 
mmlber of modes are plotted in Fig. 4a and b for R0 -- 20 and 5. resp(~'tively. The dashed curves show the 
growth rates -cJ '  for modes n = 4, 8, 16, 24, and 30 (curves 1-5). Tim solid curw;s show f~ with jet expansion 
taken into account for the same ~dues of n. The difference in the growth rates is particularly well seen in 
i %ion of small 5. This difference increases with increasing azimuthal wavenumber. ~Ve also note that the 
growth rates/3 do not decrease (~Ls - a  i) but  increase with increasing mixing layer. 

Only a qualitative comparison with experimental da ta  is possible at the moment. Taking into account 
the nonI)arallelism offers an explanation as to some special features observed in the experiment, for example, 
the decay of moderate  azimuthal components in the near-root region and the lower growth rates than those 
predicted by the plane-parallel approximation [4, 5, 8]. 

The c~dculation results show tha t  the growth rates of the Taylor-GSrtler waves in expanding supersonic 
.jets depend significantly on the transverse coordinate. Ttmrefore, it is important in the experiment to 
determine exactly tim coordinates of the point where the corresponding quantity is measured. 
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