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EFFECT OF FLOW NONPARALLELISM ON INSTABILITY
OF THE TAYLOR-GORTLER WAVES IN SUPERSONIC AXISYMMETRIC JETS

N. M. Terekhova UDC 532.526

Within the framework of the linear theory of hydrodynamic stability, the characteristics of the
Taylor-Gortler waves are numerically simulated at the initial section of a supersonic axisym-
metric jet taking into account the effects of flow nonparallclism and erpansion. The special
features of the streamwise dynamics of the growth rates of various wave components for turbu-
lent, weakly nonisobaric, and laminar jets are studied. It is shown that the growth rates depend
strongly on the quantity on which their determination is based. the position of the point where
it is measured. and the flow regime. Some erperimental results are discussed. and a method
for determining the growth rates is proposed.

Introduction. The objective of the present work is to study the effect of nonparallelism of the
mean flow fields. which is related to expansion of a supersonic axisvmmetric jet, on the characteristics of
disturbances of rotational or centrifugal instability — Taylor-Gortler waves. In nonisobaric jets, these waves
have the form of a system of streamwise quasi-stationary vortices enclosed in the mixing laver of the initial
section. This type of instability in jets is of great interest, which is evidenced by the large number of
experimental works [1 -6]. Most works note the existence of transverse-azimuthal overflow of the gas mass,
which leads to siguificant deviations of the parameters from their mean values. Variations of the excess total
pressure in streamwise sections, which allow one to obtain data on the streamwise dynamics of waves, were
measured only in [4-6].

Results of systematic numerical and theoretical studies of the characteristics and structure of such
disturbances are described in [5, 7-10]. It is shown in [7] that quasi-stationary waves may occur in nonisobaric
jets if we take into account centrifugal forces arising in the motion along curved trajectories of the initial
section. It was found in [5, 8] that both the wave growth rates and the transverse-azimuthal developments of
the wave fields can be described in the plane-parallel approximation with ignored viscosity. The structures
of streamwise vortices are studied in detail in [9], and their basic dependences on some governing parameters
are established.

Studying the problem with consideration of viscosity [10] allowed one to determine the ranges of
existence of an unstable process and the critical Reynolds numbers of the loss of stability and to propose
some criterial estimates. It is also shown that. at low Reynolds numbers, the wave spectrum consists of only
one prevailing, maximally unstable mode. An increase in the Revnolds number leads to the expansion of the
spectral composition and, hence, to the complication of the structure of wave fields and wave configurations.

Some aspects remain unstudied, and without examining them. the analvsis cannot be considered to
be complete, since some properties of the disturbances observed are not described by the theory. Rapid
destruction of high-mode components is observed in the experiment upon jet spreading, whereas the inviscid
calculations show that the growth rates of small-scale components gradually increase with increasing mode
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number, and, according to the theory, these components should increase more rapidly. At the same time,
the growth rates of the waves of small azimuthal modes registered in experiments as the dominating ones are
lower than their theoretical values. It was also noted [4, 5] that there are large-scale disturbances (with small
azimuthal wavenurnbers) in the near-root regions, which decay downstream.

The difference between the experimental and theoretical data may be caused both by experimental
errors (the accuracy is not very high) and by the fact that the theory does not take into account a number of
factors (for example, the mean-velocity nonparallelism at the initial section and the dependence of the mean
and wave characteristics on the streamwise coordinate).

The objective of the present work is to study the effect of nonparallelism and downstream expansion
of the jet on wave stability. Viscosity was ignored in these studies, since the experiments were conducted for
Reynolds numbers Re & 107 for which viscosity exerts a minor effect. »

Governing Equations and Methods of Solution. The flow scheme at the initial section of an
underexpanded jet is shown in Fig., 1. We consider a compressed layer of the first barrel of an axisymmetric
ambient nonisobaric jet whose transverse length is from the external boundary of the barrel shock (BS) to
the mixing-layer boundary and whose streamwise length is from the nearest boundary of the nozzle exit to
the Mach disk. The shocks and changes in the mean parameters in these shocks are not considered, but it is
assumed that the BS position determines the values of the curvature radii Ry and. hence, the centrifugal force
proportional to U?/Ry. In the streamwise direction, the length of the computational domain is expressed
through the mixing-layer thickness 6. The range under consideration 0.1 < § < 0.65 corresponds to the actual
dimensionless thickness of the mixing layer.

We used the curvilinear orthogonal coordinates R = Ro+r, where r is the radial variable and Ry is the
curvature radius ( R >> r), and the angular variables ¢ and -, which are the azimuthal and longitudinal angles,
respectively (Fig. 1). They correspond to the radial, azimuthal, and longitudinal components of velocity v, w,
and u. If Ry = const, the streamwise coordinate z may be introduced by the relation do = Rydy. Zheltukhin
and Terekhova [7] derived the complete inviscid system of equations in these coordinates:

vy + vvp + w /v + vy — w?/r — a*/R = —p,/p,
wy 4+ vwy + wwo /1 + wwy +vw/r = —py/pr,  w+ vl +wup/r + = —p./p, (1)
pr + vpr + wp,/r + upy + p(vy +wo/r+uy +v/r)=0.

Sy +vS, +wS./r+uS; =0, S=ln (p/pl"’)"‘ .

Here p is the pressure, p is the density, and S is the entropy. System (1) is written for dimensional quantities,
and the method of normalization is described below. In (1), only the main centrifugal term in the equation
for v is taken into account. As is shown in [7], the effect of the Coriolis force vu/R in the equation for «
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and the geometric effect pv/R in the continuity equation is negligibly small. An ambient cold air jet with
k= cp/cy = 1.4 is considered.

In our analysis with nonparallelism effects taken into account, we used the results of [11, 12]. We
assume that the mean flow weakly depends on the coordinate in the streamwise direction. We introduce a
slow variable s = yx, where the small parameter x characterizes the degree of jet expansion. The velocity
field, density, and pressure are represented in the form @ = eV (r.s) + v, e’ . U (r,5) + <u|, o(r.s) + <p',
and P(r)+=p’. The dependence of the mixing-layer thickness ¢ on the coordinate 2 determines the so-called
streamwise bindings é(x) or x = ddé/dx related to the flow character or regime.

For jets with moderate pressure ratios, the realistic range of dimensionless curvature radii seems to be
5 < Ry < 25, which was studied in the present paper.

It is assumed that the compressed layer consists of two subregions. In the first, “inviscid” one [13],
which extends from the external boundary of the BS to the line of the maximum excess total pressure (the
dashed curve in Fig. 1), the total pressure is recovered, the mean velocity increases (to a maximum value),
and the flow parameters are determined from the perfect-gas equations. In the second subregion (mixing
layer), there is a smooth transition from the parameters at the internal boundary of the compressed layer to
the parameters of the ambient space.

The streamwise velocity and density in the first subregion are assumed to be constant and equal to
their maximum values. In averaging Eqs. (1), the values of the mean velocity U and mean density 5 in this
analog of the potential core are assumed to have characteristic values.

The dimensionless profiles of the mean velocity in mixing layers are defined by the following expression:

U(r) = exp (=0.693n%). n=2(r—m)/8. r=1-3§/2 (2)

This approximation formula satisfactorily describes the actual distributions [11, 14].

The characteristic dimensional linear scale is chosen as 7 for which the dimensional velocity is half of
the characteristic value; therefore, we have U = 0.5 for » = 1 in the dimensionless form. The value r = 1
coincides with half of the thickness of the mixing layer whose length is ry <r < 1+3/2.

The mean density g is related to U as g = [1 + (k — DM2(1 — U?)/2]~!, and the velocity of sound
is determined from the equation a? = [Ql\[}“;]_[. The value of the Mach number My entering into the main
equations is also determined from the line of the maximum velocity. Using isentropic relations, it can be
related to the Mach number at the nozzle exit M,.

We seek wave solutions slowly changing along the streamwise coordinate {only the pressure component
is written here) in the form

Y.z, t) = p(rs)exp (it +ing), 7=0(z)— wt. (3)
where dO/dr = a(s) (@« = a" + ia’). Here o and n are the streamwise and azimuthal wavenum-
bers. o' is the amplification factor in the streamwise direction, and the angular frequency w is real.
For the Taylor-Gortler waves, we have (p/,v.u/.p") = (p(r.s).v(r.s),u(r.s), p(r.s))exp (it) cos(ng) and
w' = iw(r.s)exp (i) sin (ny). The value of n determines the number of vortices or vortex pairs on the
jet circumference. Small and large values of n correspond to large-scale and small-scale vortices. respectively.

For the Taylor-Gértler vortices, a” and « are equal to zero. To avoid singularities during integration of
(1) for U — 0, the calculations were performed for small frequencies other than zero defined by the acoustic
Strouhal number Sh = 27&7/a, where @ is the velocity of sound outside the mixing layer. It was generally
accepted that Sh = 0.005, and small values of a” other than zero were obtained.

The complex amplitude functions of disturbances can be expanded into the asymptotic series

p(rs) =3 _</j(r.9)- )
J
We confine ourselves to two terms of expansion. Linearizing ( 1) in terms of  for waves (3) and (4), we obtain
the system

iFv; +p}/e—2Uuj/R = - By, iFw; + inp;/(er) = —/ Ba,
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iFu; + U'v; +iapj/o = —<J B3, (5)

'iFl\'I%’[)J' + vj- +v;/T + 'i,n'w,-/r +iquj = —SjB4. F=aU-w, j=0.1.

with the boundary conditions p; — 0 for r — 0 and 7 — oco. Hereinafter, the prime denotes the derivative
with respect to r. The amplitude functions of the wave components and the boundary conditions on them
can be expressed through the amplitude function of the pressure p.

It is more convenient to solve system (5) for the function p. The reduced equation for j = 0 corre-
sponding to the plane—parallel approximation has the form

L(po) = pg + Gipp + Gapo =0, (6)
where G = GV +GF, Gy =GY+GER, GY = 1/r—0'/o—2F'/F, and G§ = F?/a? — n?/r? — a?; the additional
terms GF = 20U/(FR) — 2F'B/(FE) + B'/E and G = B(n%/(rF)? — 1/a®) + 2(F' — aU(¢'/o + 2F'(1 +
B/E)/F —B'/E—1/r))/(FR) (B = 2UU’/R. E = F? — B) are determined by the presence of the centrifugal
force.

The boundary conditions in regions of constant mean parameters are expressed through the modified
Bessel functions

po=Ciluinr).  po=Cih(Ar). -0, o
o = Cal,(Aar). vl = Co K}, (Xar). 7 — 00, A = F?/a® — 2.

The formulated boundary-value problem for eigenvalues allows us to determine the eigenvalue of « in the
plane-parallel approximation.

The corresponding eigenfunction pgy has an arbitrary amplitude A(s): po = A(s)Po(r, s). For F. the
same equation as for py is valid [Eq. (6) with boundary conditions (7)]. and the wave solution of zero order
is written in the form

p(r.2, . t) = A(s)Po(r.s)exp (i) cos (ng) + O(<). (8)

For the first-order approximation in terms of ¢ (j = 1}, system (5) vields a system of inhomogeneous equations
whose right sides contain the functions of zcro order. their derivatives with respect to » and x, the mean
transverse velocity V determined from the continuity equation. and the mean-velocity gradients:

By = V'uy + Vu, + Uvos, By = Vuyp/r + Vugy + Uwoy,

By = Uug+ Vuy+ Unoz +poc/o.  Bi= (V' +V/r+Us)po + Vpy/a® + Upor/a® + ouoe-
Here pog = AP, pop = APy + PoAsz, vo = AW, vor = AV + VoA, wog = AWy, wor = AWy + WoA,,
ugp = AUy, uyy = AUy, + UpAz. P is the solution of (6), and Vj, 1V, and Uy are expressed in terms of Py
from (5).

Reducing the inhomogeneous systemn to one equation for p;

L(])[) - NlA + IVQ g
dx

where N = N1 +N_) = L(Dll +‘1:IID2/I‘+’1:(YD3+D1/‘I'+B1/Q)QE/F, D[ - (LFBl +2UB3/R)/E Dg = IB_)/F,
and D3 = (iFBy — U'By)/E. we can easily see that the operator L(p1) is equivalent to operator (6). The
operator L(p;) is degenerate; therefore, a solution for p; exists under the condition of orthogonality of the
right side of the equation to the solution of the II problem conjugate to (6) and (7):

. dA
/ (MA+N = )dr=0. ©)
The equation for II is easily obtained from (6):
" — (GIT) + GoIl = 0.

The boundary conditions are found from the bilinear form ¥([poIl] = poIl/r + ppII — poIl’ and conditions (7).
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dln(b‘p)| B
dx
3t 41
2F 10
3
-1

The coefficient of streamwise amplification of zero-order disturbances 3 for a weakly nonparallel flow
is determined from (8):

3 = Real dlnp

= Real(ia + din A + dln PO).

dr dx

Using the condition of solubility of Eq. (9), we can express the logarithmic derivative A(z):

dind _ _ / N, Idr / / NoTldr.
dx )

The gradients in E¢. (10) depend on the value of y, which can vary in a wide range depending on
the flow regime and jet-pressure ratio. It is much greater for a turbulent jet than for a laminar one because
of enhanced mixing, and it is greater for an underexpanded jet with high pressure ratios than for a weakly

dr (10)

nonisobaric jet.

In free jet flows (in contrast to the near-wall boundary layers), the distribution of the mean velocities
in mixing layers is independent of the flow regime, and relation (2) is valid for the laminar, transitional, and
turbulent jets. This was shown theoretically for planar jets [15] and noted many times in experiments with
axisymmetric jets (see [L4]). Hence, the transverse gradients of the mean and wavy components are identical.
The change in the thickness of free boundary layers is determined by the state of the flow and exhaustion
regime; hence, the derivatives with respect to the streamwise coordinate may vary within wide limits.

In this paper, we consider three regimes of air jet exhaustion for My = 1.5:

(1) turbulent jet with a large pressure ratio (y; = 0.2281 [16]);

(2) turbulent, weakly underexpanded jet (x2 = 0.157 [6]);

(3) laminar isobaric jet (y3 = 0.08732 [11}).

In this case, we have § = xa + dp. where Jy is the initial thickness of the mixing layer for & = 0. The
latter regime allows us to evaluate the influence of the exhaustion regime on x. The flow parameters of the
third regime are close to the flow parameters with weak nonisobaricity.

The values of y in cach regime differ by several times. The degree of expansion depends on the
composition of the jet and the medium whereto the exhaustion is performed.

Results and Discussion. The experiments [17] show that the growth rates in a subsonic boundary
layer depend on the quantity from which they are determined and on the transverse coordinate in which this
quantity is measured. This is confirmed by numerical and theoretical studies in a supersonic boundary layer
[12]. To establish these dependences in the jet, the streamwise dynamics of several parameters was studied:
the pressure perturbations determined by Eq. (6), density perturbations, and total pressure perturbations
(or variations) [4-6].
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Variations of the total pressure dp are constructed using the known gas-dynamic relation from which,
with accuracy to quadratic terms, we obtain the expression dp = p/P + kM2((1 — k)p/(kP) + 2u/U)/(2 +
(k — 1)M?), where M is the local Mach number [7-9].

It follows from the results plotted in Fig. 2 that the position of the measured quantity along the trans-
verse coordinate significantly affects the growth rate. For exhaustion regime 2, Fig. 2 shows the calculation
results for the mode n = 16 for Ry = 20 and the mixing-layer thickness § = 0.15, 0.30, and 0.45 (curves 1-3).
The solid curves show the distributions of the absolute value of the logarithmic derivative |d In (dp)/dz|. Tt is
seen that this quantity, which enters Eq. (10). changes significantly in the mixing layer. Hence. the coefficient
3 also depends strongly on 7 (dashed curves in Fig. 2). The straight lines show the values of —a' for the
plane-parallel approximation.

For moderate values of the thickness (for example. § = 0.15), there exists even a range of negative values
of 3, where the disturbances are decaying. The presence of these “tongues” is related to the reconstruction
of wave configurations [9], where a vortex existing at a small thickness 0 is displaced from the mixing layer
by a counterrotating vortex. For large 4, there are no negative values of 3, but the strong dependence on
the transverse variable is retained. Hence, in measuring the growth rates, one has to determine exactly
the location of the measured quantities. We consider this problem in more detail. The values of 3 were
calculated for three exhaustion regimes from different quantities (Fig. 3): from the amplitude function of
pressure in its maximum (6) (curve 1), from the amplitude function of density in its maximum (curve 2),
from variation of the total pressure dp in its maximum (curve 3), from Jdp at the line of the halved averaged
total pressure (curve 4), and from dp at the line of the halved mean velocity U = 0.5 (curve 5). Curves 1-3
are of purely theoretical interest, since the experiments register a rather complicated multimode spectrum of
disturbances [4, 5, 8], and it is difficult to determine the coordinates of the first three ¢uantities in experiment.
The last two quantities can serve as bindings in measurements, and the coordinate of the latter can be casily
determined since it coincides with the half-width of the mixing layer.

The dashed curves in Fig. 3 show the growth rates —a’ in the plane-parallel approximation. The
maximum difference between the curves for —a and 3 (solid curves) is observed for small § (in the near-root
region). With increasing J, these curves come closer. It is also seen that the growth rates of disturbances
in regime 1 are significantly lower for a turbulent jet than for a laminar one (regime 3), which is related to
enhanced ruixing.

It was found that the increments significantly depend on the quantities from which they are determined.
Generally, the values of 3 are lower than the corresponding values of —a?. This is in qualitative agreement
with the experiments of [5, 8]. This regularity is invalid for curve 4. It has a strong longitudinal gradient:
therefore, large errors are possible in determining . For small 4, disturbances in turbulent regimes may be
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decaying (8 < 0), whereas the theoretical values of —a' are always positive.

Similar features are typical of jets with a significant curvature of the boundaries (small Rp). With
increasing centrifugal forces. the growth rates of disturbances increase significantly; the flow expansion in
the near-root regions leads to a decrease in 3 as compared to the plane-parallel approximation but does not
involve the decay of waves with small azimuthal numbers.

Since the problem is multiparametric, it is dificult to find a suitable form for representation of the
rest We chose regime 2 (x2) for dp (curve 5 in Fig. 3). These dependences of the growth rates 3(d) for a
number of modes are plotted in Fig. 4a and b for Ry = 20 and 5. respectively. The dashed curves show the
growth rates —a’ for modes n = 4, 8, 16, 24, and 30 (curves 1-5). The solid curves show 3 with jet expansion
taken into account for the same values of n. The difference in the growth rates is particularly well seen in
i wion of small §. This difference increases with increasing azimuthal wavenumber. We also note that the
growth rates 3 do not decrease (as —a?) but increase with increasing mixing layer.

Only a qualitative comparison with experimental data is possible at the moment. Taking into account
the nonparallelisin offers an explanation as to some special features observed in the experiment. for example,
the decay of moderate azimuthal components in the near-root region and the lower growth rates than those
predicted by the plane—parallel approximation [4, 5, 8].

The calculation results show that the growth rates of the Taylor-Gértler waves in expanding supersonic
jets depend significantly on the transverse coordinate. Therefore, it is important in the experiment to
determine exactly the coordinates of the point where the corresponding quantity is measured.
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